Introduction to Quantum Mechanics

Gracie Conte

University of North Carolina, Chapel Hill July 12, 2019

Classical Mechanics

- Describes the motion of macroscopic objects
- Position, momentum and energy move in smooth, orderly and predicable patterns
- Fairly simple

Classical Mechanics

- Describes the motion of macroscopic objects
- Position, momentum and energy move in smooth, orderly and predicable patterns
- Fairly simple

Quantum Mechanics

- Describes motion for particles of very small sizes
- Position, momentum and energy restricted to discrete values

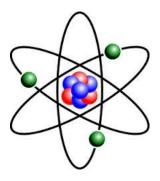
Classical Mechanics

- Describes the motion of macroscopic objects
- Position, momentum and energy move in smooth, orderly and predicable patterns
- Fairly simple

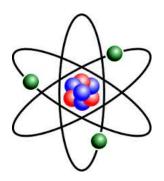
Quantum Mechanics

- Describes motion for particles of very small sizes
- Position, momentum and energy restricted to discrete values
 - Discrete: It's like comparing a ramp and a staircase.
- Not very simple

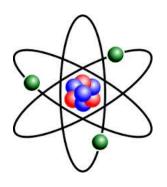
Classical Mechanics

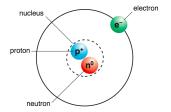

- Describes the motion of macroscopic objects
- Position, momentum and energy move in smooth, orderly and predicable patterns
- Fairly simple

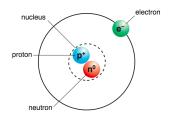
Quantum Mechanics


- Describes motion for particles of very small sizes
- Position, momentum and energy restricted to discrete values
 - Discrete: It's like comparing a ramp and a staircase.
- Not very simple

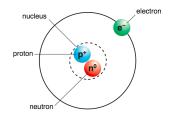
Conclusion: Classical Mechanics is too simple for extremely small particles moving at very high speeds.

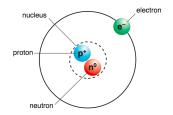


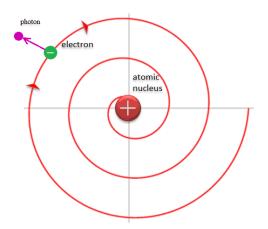

- Nucleus = protons + neutrons
- Atom = nucleus + electrons



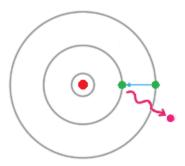
- Nucleus = protons + neutrons
- Atom = nucleus + electrons
- Protons have positive charge
- Nuetrons have no charge
- Electrons have negative charge




 Electrons are accelerating around the neucleus

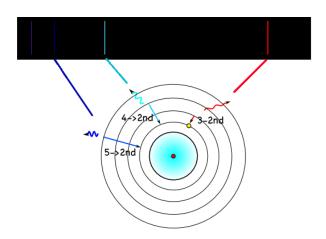

- Electrons are accelerating around the neucleus
- Acceleration = a changing electric field (photons should be emitted)

- Electrons are accelerating around the neucleus
- Acceleration = a changing electric field (photons should be emitted)
- Thus electrons should lose energy



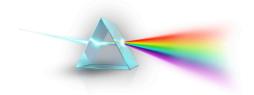
Atoms shouldn't even exist! (But they do.)

Quantum Leap




But can we verify this?

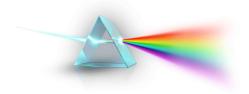
Emmision Spectra



Newton: Light is made of particles

Newton: Light is made of particles

Huygens: Light is a wave



Newton: Light is made of particles

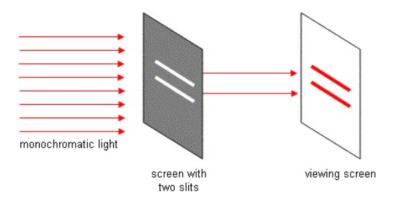
Huygens: Light is a wave

Light is made up of tiny little packets called photons that have no mass

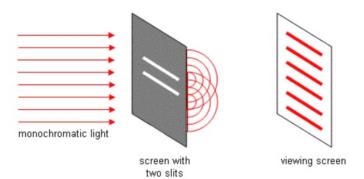
Newton: Light is made of particles

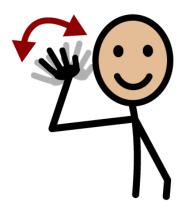
Huygens: Light is a wave

Light is made up of tiny little packets called photons that have no mass

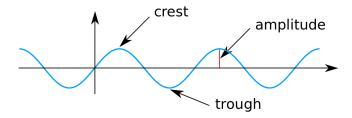

So is light a wave or a particle?

If light is made of particles...


...then we would see two spots that correspond with the rays that hit directly where the slits are located.

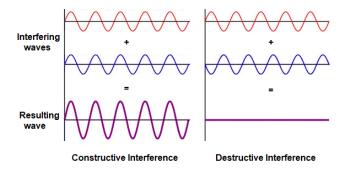

If light is a wave...

...then we would observe diffraction as we see it pass through the slits. We would be able to see an interference pattern from waves as they meet each other.

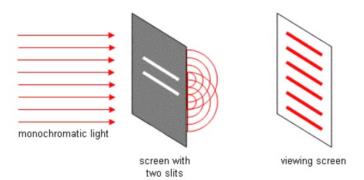


Waves

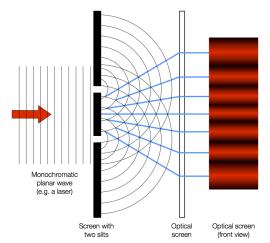
Waves


Waves

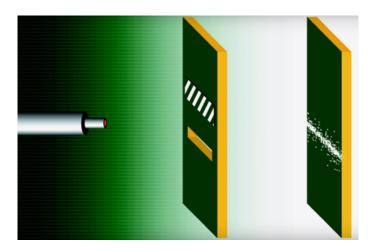
Waves - Interference



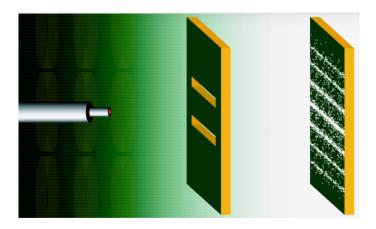
If light is a wave...


...then we would observe diffraction as we see it pass through the slits. We would be able to see an interference pattern from waves as they meet each other.

If light is a wave...

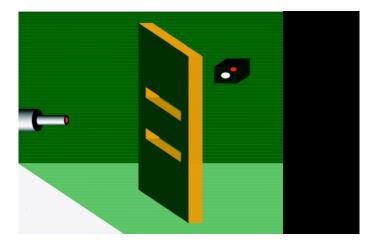


...then we would observe diffraction as we see it pass through the slits. We would be able to see an interference pattern from waves as they meet each other.


The Experiment

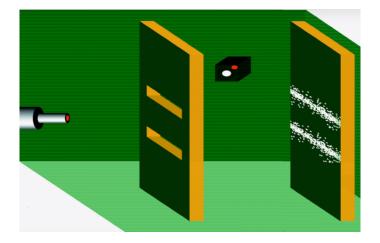
The Experiment

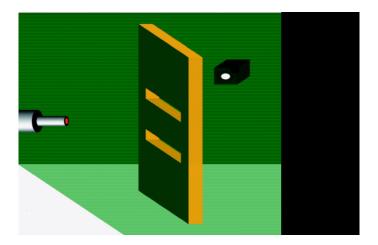
The Experiment

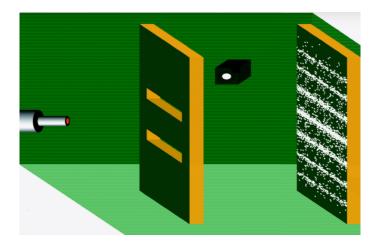


Light is a wave!

Thomas Young

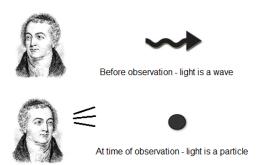

The Experiment with an Observer


The Experiment with an Observer


The Experiment with an "Observer"

The Experiment with an "Observer"

The Duality of Light



So is light a particle or wave?

The Duality of Light

So is light a particle or wave? It's both!

How is it that the photon simultaneously possesses two completely different properties?

Welcome to Quantum Mechanics!

There is still a lot we don't know.