Discretizing Schrodinger Type Operators with Spectral Accuracy on Quantum Graphs

Gracie Conte

University of North Carolina, Chapel Hill March 2, 2020

Quantum Mechanics 101

The Schrödinger equation

$$iu_t = -u_{xx} + f(x)$$

where f(x) could be:

- Potential energy term: V(x)u
- Interaction between particles: $|u|^2u$

Quantum Mechanics 101

The Schrödinger equation

$$iu_t = -u_{xx} + f(x)$$

where f(x) could be:

- Potential energy term: V(x)u
- Interaction between particles: $|u|^2u$

It is useful for modeling waves in thin branching structures

- Qubits in a quantum circuit
- Free electrons orbiting organic molecules
- Electromagnetic waves propagating through dielectric tubes

My Problem

Find time-periodic solutions to

$$iu_t = -u_{xx} - |u|^2 u$$

on

While I'm at it:

Solve $iu_t = -u_{xx} - |u|^2 u$ on any graphs with machine precision

- A **Graph**, G, is a pair (V, E) where:
 - $V = \text{set of vertices } v_j$
 - $E = \mathsf{set}$ of edges e_j

- A **Graph**, G, is a pair (V, E) where:
 - $V = \text{set of vertices } v_j$
 - $\bullet \ E = \mathsf{set} \ \mathsf{of} \ \mathsf{edges} \ e_j$
- Example
 - $V = \{a, b, c, d\}$
 - $E = \{(a,b), (b,c), (c,d), (b,d)\}$

- A **Graph**, G, is a pair (V, E) where:
 - $V = \text{set of vertices } v_j$
 - $E = \text{set of edges } e_j$
- A **Metric Graph** has the additional condition:
 - each edge has a length $l_j \in (0, \infty)$
- A Quantum Graph is:
 - a metric graph
 - has a Schrödinger type operator on each edge

- A **Graph**, G, is a pair (V, E) where:
 - $V = \text{set of vertices } v_j$
 - $E = \text{set of edges } e_j$
- A **Metric Graph** has the additional condition:
 - ullet each edge has a length $l_j \in (0,\infty)$
- A Quantum Graph is:
 - a metric graph
 - has a Schrödinger type operator on each edge
 - Schrödinger's Equation: $iu_t = -u_{xx} + f(x)$

- A **Graph**, G, is a pair (V, E) where:
 - $V = \text{set of vertices } v_j$
 - $E = \text{set of edges } e_j$
- A **Metric Graph** has the additional condition:
 - ullet each edge has a length $l_j \in (0,\infty)$
- A Quantum Graph is:
 - a metric graph
 - has a Schrödinger type operator on each edge
 - Schrödinger's Equation: $iu_t = -\frac{u_{xx}}{\uparrow} + f(x)$

Schrödinger type operator

Example: Solutions on Graphs

Star Graph

1 1 2

Dumbbell Graph

Vertex Conditions

Possible conditions at a vertex v:

- 1) Leaf Nodes (Incident to exactly one edge)
 - Boundary Condition
 - Dirichlet: $u_i(v) = 0$
 - Neumann: $u_i'(v) = 0$
 - Robin: $\alpha_j u_j(v) + u_j'(v) = 0$

Vertex Conditions

Possible conditions at a vertex v:

- 1) Leaf Nodes (Incident to exactly one edge)
 - Boundary Condition
 - Dirichlet: $u_i(v) = 0$
 - Neumann: $u_i'(v) = 0$
 - Robin: $\alpha_j u_j(v) + u'_j(v) = 0$
- 2) Internal Nodes (Incident to more than one edge)
 - Matching Conditions
 - Continuity Condition: $u_j(v) = u_k(v)$
 - Current Conservation: $u_i'(v) = u_k'(v)$
 - Kirchoff: $\sum_{j=1}^{d_v} u_j'(v) = \sigma u_1(v)$

Problem: Solve for u when $x \in [0, \ell]$ in:

$$u_{xx} = f(x), \quad u(0) = a, \quad u(\ell) = b$$

Discretized Problem: $D^2 \vec{u} = \vec{f}$ where D is the discretized version of $\frac{d}{dx}$

We know D^2 and \vec{f} so we can solve for \vec{u} .

Problem: Solve for u when $x \in [0, \ell]$ in:

$$u_{xx} = f(x), \quad u(0) = a, \quad u(\ell) = b$$

Discretized Problem: $D^2 \vec{u} = \vec{f}$ where D is the discretized version of $\frac{d}{dx}$

We know D^2 and \vec{f} so we can solve for \vec{u} .

But how does do we enforce the boundary conditions?

Popular method

- Row replacement
- Linear convergence

Popular method

- Row replacement
- Linear convergence

Our Method

- Project information from n points to n-2 points
 - Method name: Rectangular Collocation
- Spectral convergence
 - $e_n \sim (\frac{\ell}{n})^n$

1. Start with:

- n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
- n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points

1. Start with:

- n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
- n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points

Given discretization points $\{x_k\}_{k=1}^n$ the barycentric weights are:

$$w_k = \prod_{\substack{l=1\\l\neq k}}^n (x_k - x_l)^{-1}$$
 $k = 1, ..., n$

The unique polynomial interpolating $\{(x_j, f_j)\}_{j=1}^n$ is:

$$p_{n-1}(y) = \frac{\sum_{k=1}^{n} (w_k/(y - x_k)) f_k}{\sum_{l=1}^{n} (w_k/(y - x_l))}$$

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points

Gracie Conte

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - ullet n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points

$$p_{n-1}(\boldsymbol{y}) = P \ p_{n-1}(\boldsymbol{x})$$

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points

$$p_{n-1}(\boldsymbol{y}) = P \ p_{n-1}(\boldsymbol{x})$$

$$w_{n-2,1} = P_{n-2,n} v_{n,1}$$

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points
- 4. Use vector multiplication to define the Barycentric Resampling Matrix: P

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points
- 4. Use vector multiplication to define the Barycentric Resampling Matrix: P

$$(P_{n-2,n})_{j,k} = \begin{cases} \frac{w_k}{y_j - x_k} \left(\sum_{l=1}^N \frac{w_l}{y_j - x_l} \right)^{-1} & y_j \neq x_k \\ 1 & y_j = x_k \end{cases}$$

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points
- 4. Use vector multiplication to define the Barycentric Resampling Matrix: P
- 5. Use P to create rectangular differentiation matrices

- 1. Start with:
 - n discretization points that we are currently evaluating at $\{x_k\}_{k=1}^n$
 - n-2 discretization points we'd like to be working on instead $\{y_k\}_{k=1}^{n-2}$
- 2. Create an interpolating polynomial for the n points
- 3. Evaluates that polynomial at new n-2 discretization points
- 4. Use vector multiplication to define the Barycentric Resampling Matrix: P
- 5. Use P to create rectangular differentiation matrices

$$P_{n-2,n}D_{n,n}^2 =$$
Projected Second Derivative Matrix

Problem: Solve for u when $x \in [0,\ell]$ in:

$$u_{xx} = f(x), \quad u(0) = a, \quad u(\ell) = b$$

Discretized: $D^2 \vec{u} = \vec{f}$ where D is the discretized version of $\frac{d}{dx}$

(*Still need to enforce the boundary conditions*)

$$\underbrace{\begin{bmatrix} 1 & \dots & 0 \\ & PD^2 & \\ 0 & \dots & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix}}_{\vec{u}} = \underbrace{\begin{bmatrix} a \\ f_2 \\ \vdots \\ f_{n-1} \\ b \end{bmatrix}}_{\vec{f}}$$

Use some built in commands and solve $L \vec{u} = \vec{f}$ for \vec{u}

$$\underbrace{\begin{bmatrix}
1 & \dots & 0 \\
 & PD^2 & \\
0 & \dots & 1
\end{bmatrix}}_{L} \underbrace{\begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_{n-1} \\
u_n
\end{bmatrix}}_{\vec{u}} = \underbrace{\begin{bmatrix}
a \\
f_2 \\
\vdots \\
f_{n-1} \\
b
\end{bmatrix}}_{\vec{f}}$$

Use some built in commands and solve $L \vec{u} = \vec{f}$ for \vec{u}

Now glue some lines together and you have a quantum graph!

Numerically Defining Operators: Graph

Problem: Solve $u_{xx} = f(x)$ when x is in:

$$\left\{\begin{array}{ll} u_1(l_1)=u_2(l_2)=u_3(l_3)=0 & \text{Boundary Condition} \\ u_1(0)=u_2(0)=u_3(0) & \text{Continuity Condition} \\ u_1'(0)+u_2'(0)+u_3'(0)=0 & \text{Current Conservation (Kirchoff Condition)} \end{array}\right.$$

Numerically Defining Operators: Graphs

$$L = \left[\begin{array}{cccc} PD^2 & \dots & 0 \\ \vdots & PD^2 & \vdots \\ 0 & \dots & PD^2 \end{array} \right]$$

$$\left[\begin{array}{cccc} BC & \\ Continuity & \\ \\ KC & \end{array} \right]$$

Numerically Defining Operators: Graphs

Use built in commands to solve $L\vec{u} = \vec{f}$:

Convergence of Spatial Operator

Convergence of Spatial Operator

Convergence of Spatial Operator

Time Evolution

So you want you want to see what happens when time doesn't stand still? How interesting...

Challenges:

- Finding a time-stepper that matches the accuracy of our spatial solver
- Accounting for our spatial solver being on a new domain
- Coping with the non-linearity

Step One: Ignore the non-linearity

We know how to solve $iu_t = -u_{xx}$ analytically

(Spoiler: Its solution is an exponential)

The Problem:

$$\begin{cases} iu_t = -u_{xx} \\ \text{vertex conditions} \end{cases}$$

$$u(x,0) = f(x)$$

The Discretized Problem:

$$\begin{cases} \frac{d\boldsymbol{u}}{dt} = -iD^2\boldsymbol{u} \\ B\boldsymbol{u} = 0 \\ u(\boldsymbol{x},0) = f(\boldsymbol{x}) \end{cases} \text{ this means } \frac{d\boldsymbol{u}}{dt} \neq -i\underbrace{\left[\begin{array}{c} PD^2 \\ B \end{array} \right]}_{L} \boldsymbol{u}$$

We need to project our solution

$$\widetilde{\boldsymbol{u}} = P_{M.N} \boldsymbol{u}$$

(Note: $P_{M,N} = \text{zero matrix with } P_{n-2,n}$'s on its diagonal)

Can recover original solution using this:

$$\begin{bmatrix} P_{M,N} \\ L \end{bmatrix} \boldsymbol{u} = \begin{bmatrix} I_M \\ 0 \end{bmatrix} \widetilde{\boldsymbol{u}}$$

$$\Rightarrow \quad \boldsymbol{u} = \underbrace{\begin{bmatrix} P_{M,N} \\ L \end{bmatrix} \begin{bmatrix} I_M \\ 0 \end{bmatrix}}_{E} \widetilde{\boldsymbol{u}}$$

Apply $P_{M,N}$ to both sides of: $\dfrac{dm{u}}{dt} = -iD^2m{u}$

$$\frac{d\widetilde{\boldsymbol{u}}}{dt} = -iP_{M,N}D^2E\widetilde{\boldsymbol{u}}$$

Use analytic knowledge and matrix exponentials to get solution:

$$\widetilde{\boldsymbol{u}} = \exp\left(-itP_{N-mj,N}D^2E\right)\widetilde{\boldsymbol{u}}(x,0)$$

Recover the actual solution:

$$\boldsymbol{u} = E \exp(-itP_{M,N}D^2E)P_{M,N}\boldsymbol{u}(x,0)$$

Time Evolution: $iu_t = -u_{xx}$

Time Evolution: Nonlinear

Step Two: Admit you have a problem

$$iu_t = -u_{xx} - |u|^2 u$$

Challenges:

- Most well-developed non-linear schemes are only fourth order
- The better schemes haven't been adjusted for DAEs

Time Evolution: Strang Splitting

Rewrite: $u_t = \mathcal{L}u + N(u, t)$

Solve separate problems

$$d_t \mathbf{v} = \mathcal{L} \mathbf{v}$$
 $d_t \mathbf{w} = N \mathbf{w}$ $\mathbf{v}_n = e^{\mathcal{L}t} \mathbf{u}_{n-1}$ $\mathbf{w}_n = F(Nt) \mathbf{u}_{n-1}$

Second Order Scheme:

$$\boldsymbol{u}_n = e^{\mathcal{L}\frac{\Delta t}{2}} F(N\Delta t) e^{\mathcal{L}\frac{\Delta t}{2}} \boldsymbol{u}_{n-1}$$

General Scheme:

$$\mathbf{u}_n = e^{c_1 \Delta t \mathcal{L}} F(d_1 t N) e^{c_2 \Delta t \mathcal{L}} F(d_2 \Delta t N) ... e^{c_k \Delta t \mathcal{L}} F(d_k \Delta t N) \mathbf{u}_{n-1}$$

where c_i 's and d_i 's represent fractional time steps

Conclusion

- Developing tools to model Quantum Graphs is essential
- Rectangular Collocation is a superior method for solving PDE's with Schrödinger type operators
- Computationally efficient time stepping scheme come in two pieces
 - Use matrix exponentials for linear term
 - Account for non-linear term with a splitting scheme (I'll get on it)
- Will be ready to look for time periodic orbit solutions soon!

Thanks!

Special thanks to

- My advisor, Jeremy Marzuola
- My collaborator at NJIT, Roy Goodman
- And you guys for coming

