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Quantum Mechanics 101

The Schrödinger equation

iut = −uxx + f(x)

where f(x) could be:

• Potential energy term: V (x)u

• Interaction between particles: |u|2u

It is useful for modeling waves in thin branching structures

• Qubits in a quantum circuit

• Free electrons orbiting organic molecules

• Electromagnetic waves propagating through dielectric tubes
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My Problem

Find time-periodic solutions to

iut = −uxx − |u|2u

on

While I’m at it:

Solve iut = −uxx − |u|2u on any graphs with machine precision
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Graphs

• A Graph, G, is a pair (V,E) where:
• V = set of vertices vj
• E = set of edges ej

• Example
• V = {a, b, c, d}
• E = {(a, b), (b, c), (c, d), (b, d)}
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Graphs

• A Graph, G, is a pair (V,E) where:
• V = set of vertices vj
• E = set of edges ej

• A Metric Graph has the additional condition:
• each edge has a length lj ∈ (0,∞)

• A Quantum Graph is:
• a metric graph
• has a Schrödinger type operator on each edge

• Schrödinger’s Equation: iut = −uxx + f(x)
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Graphs

• A Graph, G, is a pair (V,E) where:
• V = set of vertices vj
• E = set of edges ej

• A Metric Graph has the additional condition:
• each edge has a length lj ∈ (0,∞)

• A Quantum Graph is:
• a metric graph
• has a Schrödinger type operator on each edge

• Schrödinger’s Equation: iut = −uxx + f(x)
↑

Schrödinger type

operator
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Example: Solutions on Graphs
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Vertex Conditions

Possible conditions at a vertex v:

1) Leaf Nodes (Incident to exactly one edge)
• Boundary Condition

• Dirichlet: uj(v) = 0
• Neumann: u′j(v) = 0
• Robin: αjuj(v) + u′j(v) = 0

2) Internal Nodes (Incident to more than one edge)
• Matching Conditions

• Continuity Condition: uj(v) = uk(v)
• Current Conservation: u′j(v) = u′k(v)

• Kirchoff:
∑dv

j=1 u
′
j(v) = σu1(v)
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Numerically Defining Operators: Line

Problem: Solve for u when x ∈ [0, `] in:

uxx = f(x), u(0) = a, u(`) = b

Discretized Problem: D2~u = ~f where D is the discretized version of d
dx

We know D2 and ~f so we can solve for ~u.

But how does do we enforce the boundary conditions?
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Numerically Defining Operators: BCs

Popular method

• Row replacement

• Linear convergence

Our Method
• Project information from n points to n− 2 points

• Method name: Rectangular Collocation

• Spectral convergence
• en ∼ ( `

n )n
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Rectangular Collocation

1. Start with:
• n discretization points that we are currently evaluating at {xk}nk=1

• n− 2 discretization points we’d like to be working on instead {yk}n−2k=1

2. Create an interpolating polynomial for the n points

Given discretization points {xk}nk=1 the barycentric weights are:

wk =

n∏
l=1
l 6=k

(xk − xl)−1 k = 1, ..., n

The unique polynomial interpolating {(xj , fj)}nj=1 is:

pn−1(y) =

∑n
k=1(wk/(y − xk))fk∑n
l=1(wk/(y − xl))
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Rectangular Collocation

1. Start with:
• n discretization points that we are currently evaluating at {xk}nk=1

• n− 2 discretization points we’d like to be working on instead {yk}n−2k=1

2. Create an interpolating polynomial for the n points

3. Evaluates that polynomial at new n− 2 discretization points

pn−1(y) = P pn−1(x)

wn−2,1 = Pn−2,n vn,1
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Rectangular Collocation

1. Start with:
• n discretization points that we are currently evaluating at {xk}nk=1

• n− 2 discretization points we’d like to be working on instead {yk}n−2k=1

2. Create an interpolating polynomial for the n points

3. Evaluates that polynomial at new n− 2 discretization points

4. Use vector multiplication to define the Barycentric Resampling
Matrix: P

(Pn−2,n)j,k =


wk

yj−xk

(
N∑
l=1

wl

yj − xl

)−1

yj 6= xk

1 yj = xk
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Rectangular Collocation

1. Start with:
• n discretization points that we are currently evaluating at {xk}nk=1

• n− 2 discretization points we’d like to be working on instead {yk}n−2k=1

2. Create an interpolating polynomial for the n points

3. Evaluates that polynomial at new n− 2 discretization points

4. Use vector multiplication to define the Barycentric Resampling
Matrix: P

5. Use P to create rectangular differentiation matrices

Pn−2,nD
2
n,n = Projected Second Derivative Matrix
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Numerically Defining Operators: Line

Problem: Solve for u when x ∈ [0, `] in:

uxx = f(x), u(0) = a, u(`) = b

Discretized: D2~u = ~f where D is the discretized version of d
dx

(*Still need to enforce the boundary conditions*)
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Numerically Defining Operators: Line


1 ... 0 PD2


0 ... 1


︸ ︷︷ ︸

L


u1

u2
...

un−1

un


︸ ︷︷ ︸

~u

=


a
f2
...

fn−1

b


︸ ︷︷ ︸

~f

Use some built in commands and solve L~u = ~f for ~u

Now glue some lines together and you have a quantum graph!
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Numerically Defining Operators: Graph

Problem: Solve uxx = f(x) when x is in:


u1(l1) = u2(l2) = u3(l3) = 0 Boundary Condition
u1(0) = u2(0) = u3(0) Continuity Condition
u′1(0) + u′2(0) + u′3(0) = 0 Current Conservation (Kirchoff Condition)
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Numerically Defining Operators: Graphs

L =




PD2 . . . 0

... PD2
...

0 . . . PD2


[

BC
][

Continuity
][

KC
]


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Numerically Defining Operators: Graphs

Use built in commands to solve L~u = ~f :
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Convergence of Spatial Operator
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Convergence of Spatial Operator
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Convergence of Spatial Operator
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Time Evolution

So you want you want to see what happens when time doesn’t stand still?
How interesting...

Challenges:

• Finding a time-stepper that matches the accuracy of our spatial solver

• Accounting for our spatial solver being on a new domain

• Coping with the non-linearity
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Time Evolution: Linear

Step One: Ignore the non-linearity

We know how to solve iut = −uxx analytically
(Spoiler: Its solution is an exponential)
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Time Evolution: Linear

The Problem:
iut = −uxx

vertex conditions

u(x, 0) = f(x)

The Discretized Problem:
du

dt
= −iD2u

Bu = 0

u(x, 0) = f(x)

this means
du

dt
6= −i

[ [
PD2

]
[ B ]

]
︸ ︷︷ ︸

L

u
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Time Evolution: Linear

We need to project our solution

ũ = PM,Nu

(Note: PM,N = zero matrix with Pn−2,n’s on its diagonal)

Can recover original solution using this: PM,N

L

u =

[
IM
0

]
ũ

⇒ u =

[
PM,N

L

] [
IM
0

]
︸ ︷︷ ︸

E

ũ
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Time Evolution: Linear

Apply PM,N to both sides of:
du

dt
= −iD2u

dũ

dt
= −iPM,ND

2Eũ

Use analytic knowledge and matrix exponentials to get solution:

ũ = exp (−itPN−mj,ND
2E)ũ(x, 0)

Recover the actual solution:

u = E exp (−itPM,ND
2E)PM,Nu(x, 0)
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Time Evolution: iut = −uxx
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Time Evolution: Nonlinear

Step Two: Admit you have a problem

iut = −uxx − |u|2u

Challenges:

• Most well-developed non-linear schemes are only fourth order

• The better schemes haven’t been adjusted for DAEs
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Time Evolution: Strang Splitting

Rewrite: ut = Lu+N(u, t)

Solve separate problems

dtv = Lv dtw = Nw

vn = eLtun−1 wn = F (Nt)un−1

Second Order Scheme:

un = eL
∆t
2 F (N∆t)eL

∆t
2 un−1

General Scheme:

un = ec1∆tLF (d1tN)ec2∆tLF (d2∆tN)...eck∆tLF (dk∆tN)un−1

where ci’s and di’s represent fractional time steps
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Conclusion

• Developing tools to model Quantum Graphs is essential
• Rectangular Collocation is a superior method for solving PDE’s with

Schrödinger type operators
• Computationally efficient time stepping scheme come in two pieces

• Use matrix exponentials for linear term
• Account for non-linear term with a splitting scheme (I’ll get on it)

• Will be ready to look for time periodic orbit solutions soon!
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Thanks!

Special thanks to
• My advisor, Jeremy Marzuola
• My collaborator at NJIT, Roy Goodman
• And you guys for coming
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